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Abstract  
 
A directive-based parallelization tool called the Scalable Modeling System (SMS) is described.  The user inserts 
directives in the form of comments into existing FORTRAN 77 code.  SMS translates the code and directives into 
a parallel version that runs efficiently on both shared and distributed memory high-performance computing 
platforms.  While the tool has been tailored toward finite difference approximation and spectral atmospheric 
models, the approach is sufficiently general to be applied to other structured grid codes.  Results from two case 
studies suggest that the parallel approach scales well.  However, further testing is required. 
 
Keywords: Parallelization; directive-based; structured grids; atmospheric model 

 
 
1. Introduction 
 
Atmospheric modelers have become increasingly dependent on high performance parallel 
computers to meet their needs.  To efficiently use these computer systems modelers must 
address issues such as portability, programmability, and performance.  Portable performance, 
the ability for a code to run efficiently on multiple architectures, is important for two reasons.   
First, computers quickly become obsolete; typically a new generation are introduced every two 
to four years.  Second, climate and weather modelers frequently share their codes with others 
who utilize different computing platforms.  The primary mission of the National Oceanic and 
Atmospheric Administration's (NOAA) Forecast Systems Laboratory (FSL) is to transfer 
atmospheric science technologies to operational agencies (such as the National Weather 
Service) both inside and outside of NOAA. Thus, the most important requirement for FSL 
parallelization efforts is that the resulting code be able to run efficiently on a variety of 
architectures.  
 
Typically, atmospheric models have been under development for years.  They are often derived 
from collaborations between multiple scientists and institutions.  In addition, the modelers who 
maintain the codes generally prefer to concentrate on the scientific aspects, avoiding 
computational issues such as vectorization and parallelization.  This combination of factors 
imposes two additional requirements on any parallelization effort: modifications to serial code 
and the effort to parallelize should be minimized. 
 
In the past decade, several distinct approaches have been offered to meet one or more of these 
requirements.  One class of solutions is a directive-based micro-tasking (loop level) approach 
offered by companies such as Cray.  More recently, OpenMP, a standard for such a set of 
directives, has become accepted in the community.  OpenMP can be used to quickly produce 
parallel code, with minimal impact on the serial version.  Unfortunately, the approach does not 
work for distributed memory architectures. 
 
A message passing library such as Message Passing Interface (MPI), represents a second class 
of solutions suitable for shared or distributed memory architectures.  The scalability of parallel 
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codes using these libraries can be quite good, although likely lower than the micro-tasking class 
for small shared memory machines.  The MPI libraries are relatively low-level.  This requires 
the modeler to expend significantly more effort to analyze dependencies and parallelize their 
code.  Further, the resulting code may differ substantially from the original serial version.   
 
A third class of solutions is the parallelizing compiler.  This class offers the promise of 
automatically producing a parallel code that is portable to shared and distributed memory 
machines.  The compiler does the dependence analysis and offers the user directives and/or 
language extensions that reduce the development time and the impact on the serial code.  The 
most notable example of a parallelizing compiler is High Performance FORTRAN (HPF).  In 
some cases the resulting parallel code is quite efficient (The Portland Group, 1999).  However, 
there are also deficiencies in this approach.  Compilers are often forced to make conservative 
assumptions about data dependence relationships, which slow down the code (Ierotheou, et al., 
1996).  In addition, weak compiler implementations by some vendors result in widely varying 
performance across different systems (Frumkin, et al., 1998; Ngo, et al., 1997). 
 
A fourth class of solutions is interactive parallelization tools.  One such tool, called the 
Parallelization Agent, automates the tedious and time consuming tasks while requiring the user 
to provide the high level algorithmic details (Kothari and Kim, 1997).  Another tool, called the 
Computer-Aided Parallelization Tool (CAPTools), attempts a comprehensive dependence 
analysis (Ierotheou, et al., 1996).  This tool is highly interactive, querying the user for both high 
level information (decomposition strategy) and lower level details such as loop dependencies 
and ranges that variables can take.  Both of these tools offer the possibility of a quality parallel 
solution in a fraction of the time required to analyze dependencies and generate code by hand.  
However, although the generated code is recognizable, the sequential and parallel versions of 
the source are distinctly different. 
 
A fifth class of solutions are library-based tools such as RSL (Michalakes, 1994), and the 
Scalable Modelling System (SMS) (Rodriguez, et al., 1996).  These tools are built on top of the 
lower level libraries and serve to relieve the programmer of handling many of the details of 
message passing programming. Performance optimizations can be added to these libraries that 
target specific machine architectures. Unlike computer-aided parallelization tools such as 
CAPTools however, the user is still required to do all dependence analysis by hand. 
 
In simplifying the parallel code, these high level libraries also reduce the impact to the original 
serial version.  Parallelization is still time consuming and invasive however, since code must be 
inserted by hand and multiple versions must be maintained.  To further reduce this impact, 
source translation tools have been developed to help modify these codes automatically.  One 
such tool, the Fortran Loop and Index Converter (FLIC), generates calls to the RSL library 
based on command line arguments that identify decomposed loops needing parallelization 
(Michalakes, 1997).  While useful, this tool has limited capabilities. 
 
Here, we present a directive-based translation tool that is a new addition to SMS called the 
Parallel Pre-Processor (PPP).  The programmer inserts the directives (as comments) directly 
into the FORTRAN 77 serial code.  PPP then translates the directives and serial code into a 
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parallel version that runs on shared and distributed memory machines.  Since the programmer 
adds only comments to the code, there is little impact on the serial version.  Further, SMS hides 
enough of the details of parallelism to significantly reduce the coding and testing time 
compared to an MPI based solution. While SMS has only been applied to atmospheric model 
codes, the approach is sufficiently general to work for other structured grid models. 
 
The remainder of this paper explains the details of how SMS works.  Section 2 summarizes 
important parallel issues encountered in typical model codes.  Sections 3 and 4 describe the 
structure of SMS and explain how the directives help the programmer resolve these parallel 
coding issues.  Section 5 presents two case studies and offers performance results.  Finally, 
section 6 concludes and suggests future enhancements to the tool. 
 
 
2. Parallel Coding Issues 
 
In any parallelization effort, the most important issue is to determine how to divide the work 
among the processors.  In order to enable the problem to scale to large numbers of processors, 
the most common approach for the structured grids found in atmospheric model codes is to use 
a data domain decomposition.  In this case, parallelism is usually achieved by having multiple 
processes execute the same program on different segments of the distributed data.  This type of 
parallelism is called Single Program Multiple Data (SPMD).   
 

 
 
Figure 1: Representation of a horizontal data domain decomposition.  Thin lines demarcate model grid boxes; 
thick lines indicate processor boundaries.  In this case, the model data are divided among 4 processors. 
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In Figure 1, a horizontal data domain decomposition is shown where each processor controls 
the data in a slab from the surface to the top of the atmosphere.  This decomposition is often 
used in finite difference approximation (FDA) weather models since complex dependencies for 
the physical parameterizations are rarely encountered in the horizontal.   
 
When a data domain decomposition is chosen, four additional issues must be resolved in any 
parallelization effort.  First, the code must be analyzed to determine where data dependencies 
occur.  For example, the computation of y(i,j) in the statement: 
 
  y(i,j) = x(i+1,j) + x(i-1,j) + x(i,j+1) + x(i,j-1)  
 
depends on the i+1, i-1, j+1, and j-1 points of the “x” array.  This is called an adjacent 
dependence.  When these data points are not local to the processor, they will need to be 
obtained from another processor.  It is critical to understand all data dependencies in the source 
code.  Further information about dependence analysis can be found in references on parallel  
programming such as Hwang (1993). 
 

Figure 2: Schematic of array declarations for serial code and the corresponding 3 processor parallel version.  
In this case, the number of processors divide the sequential array size evenly. 

 
Once data dependencies are understood, several critical coding problems must be handled.  
First, the FORTRAN 77 loops must be modified to operate only on the data local to each 
processor.  Second, in order for the memory usage to remain roughly constant with an 
increasing number of nodes, the array declarations must be modified to cover only the processor 
local domain (Figure 2).  Third, some mechanism may be required to make conversions 
between global and local array indices.  For example, if decomposed arrays are indexed locally, 
the handling of model boundary conditions will require a conversion of an array index to its 
global equivalent (Figure 3). 
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Figure 3: Schematic showing the relationship between global and local array indices for the 
case when an array is decomposed among 3 processors. 

 
A second critical issue involves how to handle the communication needed to resolve data 
dependencies.  Since each processor contains a sub-domain, access to data on other processors 
may be required. The most common solution to handle adjacent dependencies uses halo or 
ghost regions (Figure 4).  Each processor sends the edges of its data to its neighbors where it is 
stored in the halo regions.  Then, loop calculations can be executed completely over each 
processor's local domain.   

 
 

Figure 4: Schematic of how communications are implemented to handle adjacent 
dependencies using halo regions and “exchanges”.  The first column of P2 is sent to P1 
where it is stored in the halo region just to the right of P1’s data.  The last column of P1 is 
stored in the left halo region of P2.  The other communication works analogously. 
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Another important dependence, called a global dependence, occurs when all points in a given 
decomposed dimension are used in calculations such as summation.  This requires 
communication among all processors in that dimension (Figure 5).  For real and complex 
summations, re-ordering these sums can cause round-off errors.  Since atmospheric models 
simulate non-linear systems, such errors can result in completely different solutions within a 
matter of a few model days.  Therefore, for testing purposes, it is desirable to provide a 
mechanism for cross-processor summations that yield the bit-wise exact same answer 
regardless 
Of the number of processors applied to the  code. 
 
 

Figure 5: Schematic of a global summation.  Each processor computes its local sum; 
storing it in “xsum”.  The local “xsum” values for all processors are then added to produce 
the global sum of the decomposed array “x”. 

 
A third critical issue is how to handle input and output of decomposed variables.  Typically on 
input, one processor reads the data and scatters it appropriately to the others (Figure 6). On 
output, a gather of the decomposed data is followed by a write by a single processor. 
Alternatively, each processor could write their local data to disk; a post-processor would then 
be required to reassemble the decomposed arrays.  Another alternative supported on some 
systems  is parallel I/O, where multiple processors write to disk. 

xsum = 0.0
do i=1,15

xsum = xsum + x(i)
enddo

x
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1 3 4 52
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Figure 6: Schematic of the input and output of a decomposed array.  On input, one 
processor reads the global data from disk.  The appropriate sections of the global array are 
then “scattered” to each processor.  On output, the decomposed data are gathered into a 
global array and then written to disk by one processor. 

 
The fourth critical issue is how to transform data between different domain decompositions.  In 
some models, computations may occur in alternating phases with each phase having different 
dependencies.  One solution is to create a decomposition for each phase.  In nested models, for 
example, fine and coarse will require different decompositions.  Alternatively, in the spectral 
atmospheric code discussed in Section 5 (for 1-dimensional decompositions), a decomposition 
in latitudes is optimal for the physics and Fast Fourier Transform code while a decomposition 
in longitudes or in the vertical is ideal for the Legendre transforms. 
 
Once these critical issues are addressed, the programmer can apply advanced techniques to 
improve performance.  Load balancing strategies are important in optimizing performance.  
Both static and dynamic load imbalances should be considered.  One example of a static load 
imbalance in a global atmospheric model occurs in short wave radiation calculations.  These 
calculations are only needed in the daytime; processors whose domain contains nighttime points 
will have less work.  The effect of this load imbalance becomes more pronounced as the 
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number of processors increases.  To see this, imagine each processor has only two grid points.  
If one of these processors has two night points and another has two day points, then the short 
wave calculations are running at only 50% efficiency.  Performance will improve by re-
distributing day and night points among the processors. One example of a dynamic load 
imbalance in atmospheric models occurs in convection calculations.  Clouds can exist for a 
period of time in some regions and not others.  Processors containing these convective regions 
will be busy doing extra calculations while the other processors will be idle.  As the clouds 
move or change over time, the load imbalance shifts. 
 
Performance trade-offs relating to the target system architecture should be considered in areas 
including the processor type, memory organization and inter-processor communications speed.  
For example, vector processors will perform better with long vector lengths while cache-based 
machines will do better with short ones.  Inter-processor communications, a combination of the 
speed in which messages can be moved between processors (bandwidth) and the time required 
to set up these communications (latency), can vary widely between architectures. There are 
several common techniques used to reduce communication costs. On parallel machines that 
support asynchronous communications, messages can be transferred at the same time as model 
calculations are being done.  In addition, combining messages into a single long message  
(aggregation) will reduce communications latency.  Another strategy allowed by SMS and 
explained in Section 3, trades communications for redundant computations in the halo regions. 
 
 
3. Overview of SMS 
 
SMS was designed to support SPMD parallelism on both shared and distributed memory 
systems. To ensure portability across these systems, SMS assumes memory is distributed; no 
processor can address memory belonging to another processor.  A local address space is used to 
access data by each processor; SMS provides mechanisms to translate global addresses into 
processor local references.  Communications between processes are implemented using the 
message passing paradigm.  Despite this assumption, the performance on shared memory 
architectures is good due to efficient implementations of message passing on these systems.   
 
SMS consists of a layered set of four components (Figure 7).  PPP, the highest layer, is a 
Fortran code analysis and translation tool built using the Eli compiler construction software 
(Gray, et al., 1992).   PPP analysis ensures consistency between the serial code and the user 
inserted SMS parallelization directives.  After analysis, PPP translates the directives and serial 
code into a parallel version. In addition to loop translations, array re-declarations, and other 
code modifications, PPP generates calls to routines contained in the Nearest Neighbor Tool 
(NNT), Scalable Spectral Tool (SST) and Scalable Runtime System (SRS) shown in the Figure 
7.  NNT is a set of high-level library routines that help address parallel coding issues such as 
data decomposition, halo region updates and loop translations (Rodriguez, 1996). SRS provides 
support for input and output of decomposed data (Hart, et al., 1995).  SST is a set of library 
routines that support parallelization of spectral atmospheric models. These libraries rely on MPI 
routines to implement the lowest layered functionality required. 
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Figure 7:    SMS is composed of a layered set of components.  The modeler inserts 
comment-based directives into the serial code.  These comments and serial code are 
translated into a parallel version that includes calls to the NNT, SRS and SST libraries.  
These libraries depend on the underlying message passing library, currently MPI. 

 
SMS provides several techniques for optimizing performance.  One is to make platform specific 
optimizations in the message passing layer.  During a recent FSL procurement, one vendor 
replaced the MPI implementation of key SMS routines with the vendor’s native 
communications package to improve performance.  No changes to the model codes were 
necessary.  
 
SMS also supports performance optimizations in inter-processor communications. One strategy 
is to trade communications for redundant calculations.  Under this scheme, each processor does 
extra computations in the halo regions to eliminate some data exchanges with its neighbors.  
Figures 8a,b shows how this works.  In Figure 8a, exchanges are required after loops 150 and 
250.  However, in 8b, the loops are executed one point into the halo region in each direction; 
eliminating the need for the exchanges after loop 150.  On machines with low communication 
costs it may be better to avoid these redundant computes and simply exchange data after each 
loop.  SMS also supports aggregation when exchanging multiple model variables in order to 
reduce communications latency. 

THE SCALABLE MODELING
SYSTEM (SMS)

NNT SRS

PPP

SST

MPI
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C Assume entire halos of a and b valid before loop 150
C Assume entire halos of x must be valid after 250

do 150 i=LOCAL_START_INTERIOR,LOCAL_END_INTERIOR
y(i) = a(i) - a(i+1) - a(i-1)
z(i) = b(i) - b(i+1) - b(i-1)

150 continue
EXCHANGE y and z HERE

do 250 i=LOCAL_START_INTERIOR,LOCAL_END_INTERIOR
x(i) = y(i)*z(i) + y(i+1)*z(i-1)

+ y(i-1)*z(i+1)
250 continue

EXCHANGE x HERE 

Figure 8a: Sample code where no redundant computations are performed.  An exchange of 
arrays “y” and “z” are required for loop 250 to produce the correct answer on each processor. 
 

C Assume entire halos of a and b valid before loop 150
C Assume entire halos of x must be valid after 250

do 150 i=LOCAL_START_1STEP,LOCAL_END_1STEP
y(i) = a(i) - a(i+1) - a(i-1)
z(i) = b(i) - b(i+1) - b(i-1)

150 continue
do 250 i= LOCAL_START_1STEP,LOCAL_END_1STEP

x(i) = y(i)*z(i) + y(i+1)*z(i-1)
+ y(i-1)*z(i+1)

250 continue
EXCHANGE "x" HERE

Figure 8b: A version of the same code that uses redundant computation.  Since “y” and “z” 
are computed one step into the halo region, their halo regions are up to date after loop 150.  
Consequently, the exchanges of “y” and “z” after loop 150 can be eliminated. 

 
Performance optimizations have also been built into SMS I/O operations.  By default, all I/O is 
handled by a single processor.  Input data is read by this node and then scattered to the other 
processors.  Similarly, decomposed output data is gathered by a single process and then written. 
Since atmospheric models typically output forecasts several times during a model run, these 
operations can significantly affect the overall performance.  To improve performance, SMS 
allows the user to dedicate multiple output processors to gather and output these data 
asynchronously.  This allows compute operations to continue at the same time data are written 
to disk.   The use of multiple output processors has been shown to improve model performance 
by up to 25 percent (Henderson, et al., 1994). 
 
 
4.  SMS Directives. 
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This section describes, at a high-level, how SMS directives can be used to address the parallel 
coding issues identified in Section 2.  More information on the use of SMS to parallelize codes 
is available in the SMS Users Guide (Henderson, et al., 1999).  In addition, more detailed 
information and examples about the SMS directives are provided in the SMS Reference Manual 
(Govett, et al., 1999).  Although directives begin with the characters CSMS$, these will 
generally be dropped for brevity. 
 
The directives DECLARE_DECOMP, CREATE_DECOMP, and DISTRIBUTE, in 
combination, enable the programmer to decompose the data among the processors.  
DECLARE_DECOMP names a decomposition.  All other directives refer to this name.  For 
models where memory is allocated statically (i.e. FORTRAN common blocks) the programmer 
also uses DECLARE_DECOMP to define the processor local sizes of decomposed arrays.  For 
dynamically allocated (such as automatic) arrays, SMS re-declares and re-allocates the arrays to 
the correct processor-local size at run-time.  Typically, the DECLARE_DECOMP directive is 
placed inside an include file which defines global array sizes so that subroutines throughout the 
model have access to the decomposition.   
 

 
 

Figure 9:  Longitude scrambling is a static load balancing strategy available in SMS.  In 
this example, two processors that are assigned alternating sections of the globe to minimize 
the load imbalance since shortwave radiation calculations do not occur at “night” points. 
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CREATE_DECOMP initializes the data decomposition at run-time.  It is through this directive 
that the programmer specifies the number of decomposed dimensions and their global sizes.  
The sizes of the halo regions are given as well.  CREATE_DECOMP also allows the user to 
address static load imbalances in some situations.  For example, if the programmer specifies 
"SCRAMBLE_LON_STRATEGY" for a decomposed dimension then the data along that 
dimension is assumed to be along earth meridian lines and is scrambled as shown in Figure 9.  
As a result, the day-night load imbalance is improved.  The DISTRIBUTE directive is used to 
specify if and how dimensions of individual arrays are decomposed based on the 
decompositions defined by DECLARE_DECOMP.   
 
Figure 10 shows a simple example of how these directives work together in a static memory 
model.  In this case, there is only one decomposed dimension.  The DISTRIBUTE command 
tells SMS that X and Y are partitioned based on the decomposition named "my_dh".  In the 
translated code, their sizes are statically re-declared to be the size given in the expression 
"IMWORLD/3+4" specified in the DECLARE_DECOMP directive.  The PARALLEL 
directive in Figure 10 causes the lower and upper bounds of loops 100 and 200 to be translated 
into processor local equivalents for the decomposition my_dh.   
 

integer IM_WORLD
parameter(IM_WORLD = 15)

CSMS$DECLARE_DECOMP(my_dh, <IM_WORLD/3 + 4>)
CSMS$DISTRIBUTE(my_dh, <IM_WORLD>) BEGIN

real x(IM_WORLD)
real y(IM_WORLD)

CSMS$DISTRIBUTE END

C Begin executable code
CSMS$CREATE_DECOMP (my_dh, <IM_WORLD>, <2>)

CSMS$PARALLEL(my_dh, <i>) BEGIN
do 100 i = 3, 13
y(i) = x(i) - x(i-1) - x(i+1) -

& x(i-2) - x(i+2)
100 continue

CSMS$EXCHANGE(Y)
do 200 i=3,13

x(i) = y(i) + y(i-1) + y(i+1) +
& y(i-2) + y(i+2)

200 continue
CSMS$EXCHANGE(X)
CSMS$PARALLEL END

Figure 10: Sample serial code with SMS directives added.  SMS directives are the 
FORTRAN comments that start with the characters CSMS$. 

 
The calculations inside the loops expose an adjacent dependence.  Since the arrays X and Y are 
decomposed, the halo regions must be updated for the code to compute the correct answer.  The 
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EXCHANGE directive generates code that performs the communication needed to do this 
update.  If multiple variables are listed in the directive, the exchanges are aggregated to reduce 
communications latency.  Some exchanges can be eliminated using the HALO-COMP 
directive.  In figure 11, HALO_COMP specifies computations are to extend one step into the 
halo region in both directions. These redundant computations eliminate the need for an 
exchange following loop 150. 
 

CSMS$PARALLEL(my_dh,<i>) BEGIN

CSMS$HALO_COMP(<1,1>) BEGIN
do 150 i=3,13
y(i) = a(i) - a(i+1) - a(i-1)
z(i) = b(i) - b(i+1) - b(i-1)

150 continue
CSMS$HALO_COMP END

do 250 i=3,13
x(i) = y(i)*z(i) + y(i+1)*z(i-1)

& + y(i-1)*z(i+1)
250 continue

CSMS$PARALLEL END

CSMS$EXCHANGE(X)

Figure 11: Serial code segment with SMS directives that implement redundant computations 
in the halo region for loop 150.  Exchanges of “y” and “z” are not necessary.                                                     
 

REDUCE is used to address global dependencies deriving from operations such as global sums, 
maximums and minimums.  Figure 12 illustrates a typical reduction operation. In this example, 
each processor first computes its local sum.  The code generated by the REDUCE directive then 
adds these local sums.  Figure 13 illustrates a bit-wise exact reduction.  The code between the 
REDUCE BEGIN and END is replaced with a sum that will insure exactly the same result, 
regardless of the number of processors. 
 

CSMS$DISTRIBUTE(my_dh, <IM_WORLD>) BEGIN
Real x(IM_WORLD)

CSMS$DISTRIBUTE END

CSMS$PARALLEL(my_dh, i) BEGIN
xsum = 0.0
do 100, i=1,15
xsum = xsum + x(i)

100 continue

CSMS$PARALLEL END

CSMS$REDUCE(xsum, SUM)
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Figure 12: This example illustrates a global summation operation using SMS directives. 
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CSMS$DISTRIBUTE(my_dh, <IM_WORLD>) BEGIN
real x(IM_WORLD)

CSMS$DISTRIBUTE END

CSMS$REDUCE(x, xsum, SUM) BEGIN
xsum = 0.0
do 100, i=1,15
xsum = xsum + x(i)

101 continue
CSMS$REDUCE(xsum, SUM)

Figure 13: This example shows a bit-wise exact global sum  of  “x” using CSMS$REDUCE. 
 

The TO_GLOBAL and TO_LOCAL directives convert loop indices to their global or local 
equivalents.  In Figure 14, the "i" inside the "max" expression must be treated as a global index 
so that the expression "i-1" can be properly compared to the global index constant "1".  On the 
other hand, "im1" must be converted to its processor local equivalent because it is used to 
reference the decomposed variable "y". 
 

CSMS$DISTRIBUTE(my_dh, <IM_WORLD>) BEGIN
real x(IM_WORLD)
real y(IM_WORLD)

CSMS$DISTRIBUTE END

CSMS$PARALLEL(my_dh, i) BEGIN
do i=1,IM_WORLD

CSMS$TO_GLOBAL( <1,i> ) BEGIN
CSMS$TO_LOCAL( <1,im1> ) BEGIN

im1 = max(1,i-1)
CSMS$TO_LOCAL END
CSMS$TO_GLOBAL END

x(i) = y(im1)
enddo

CSMS$PARALLEL END

CSMS$REDUCE(xsum, SUM)

Figure 14:  This example illustrates conversions between global and local address spaces. 
  
Unformatted input and output of decomposed variables is handled automatically, no additional 
directives are needed.  SMS uses information given in the DISTRIBUTE directive to do the 
appropriate gathering or scattering of the data. 
 
Finally, the TRANSFER directive handles the communication necessary to transform data from 
one decomposition to another.  The source and destination arrays do not need to be 
decomposed.  For example, if the source is decomposed and the destination is not, the 
TRANSFER directive causes a gather to occur.  The converse represents a data extraction 
where each processor simply copies its local portion of the global array to its local array.  (It is 
not a scatter because each processor already has the global array in memory).  Once again, PPP 
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knows from the DISTRIBUTE directives how to generate the correct communication calls.  
Multiple pairs of arrays can be specified, in which case the transfers are aggregated.  
 
 
5. Case Studies 
 
The SMS directive-based approach has been used to parallelize three models so far: the 
atmospheric portion of the U.S. Navy Coupled Ocean/Atmosphere Mesoscale Prediction 
System (COAMPS) (Hodur, 1997), the FSL quasi-nonhydrostatic (QNH) model (MacDonald, 
et al., 1999), and the Taiwanese Central Weather Bureau Global Forecast System (GFS) (Liou, 
et al., 1997).  This section focuses on QNH and GFS since measurements of the parallel 
performance have been made.   
 
The GFS forecast model is a global, atmospheric primitive equation model on sigma 
coordinates.  The forecast model uses a semi-implicit time scheme to integrate five prognostic 
variables: vertical vorticity, horizontal divergence, potential temperature, specific humidity, and 
terrain pressure.  The horizontal differential of governing equations is calculated by a spectral 
method that includes fast Fourier transforms and Legendre transforms, while the vertical 
differential is calculated by an energy-conserving finite differencing scheme.  The forecast 
model includes physical parameterization schemes to model surface fluxes, vertical eddy 
mixing, shortwave and longwave radiative transfer, cumulus convection, grid-scale 
condensation, and gravity wave drag.  The surface flux parameterization follows Louis (1979) 
formulas, the vertical eddy mixing parameterization follows Detering and Etling (1985), the 
radiative transfer parameterization follows Harshvardhan et al. (1987), the cumulus 
parameterization follows Moorthi and Suarez (1992), the grid-scale condensation calculation 
simply removes super-saturation level by level, and the gravity wave drag parameterization 
follows Palmer et al.  (1986).  The physical processes are calculated on Gaussian grids.  The 
Legendre transform is used to transform the results back to spectral space with no aliasing 
errors. 
 
Prior to parallelizing the model, it was divided into three programs; a pre-processor, the 
computational core, and a post-processor.  Only the computational core was parallelized since 
the other pieces are executed just once at the beginning and end of the model run, respectively. 
The code in the computational core can be, roughly, divided as follows: 
 
1. Physics calculations operating on a latitude-longitude grid. 
 
2. Forward and backward Fast Fourier Transforms operating on latitude-longitude and latitude-
zonal wave number grids. 
 
3. Legendre transformations operating on latitude/zonal and zonal/meridional wave number 
grids. 
 
The target platform for the parallel version of GFS is a Fujitsu VPP 5000 parallel vector 
processor on-site at CWB.  Since this particular machine has a relatively small number of 
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processors (less than 20), it is sufficient to decompose in only one dimension.  Two parallel 
approaches can be taken to handle the Legendre transformations.  In the "Global Summation" 
method the meridional wave number dimension is decomposed and Legendre transformations 
are computed using global sums.  The other approach is to do a process transposition to enable 
execution of the Legendre calculations over non-decomposed data.  These approaches are 
compared for a variety of resolutions by Foster, et al. (1995). Their study found that the faster 
method depends on the hardware platform where the code is implemented.  As the authors point 
out, the ideal solution is to support both methods so that the code can run efficiently for any 
machine type.  
 
Here, the transposition method was chosen since the Legendre calculations will then yield an 
answer bit-wise identical to the serial code result (regardless of the number of processors), thus 
simplifying testing.  For the physics and FFT calculations, the data are decomposed in latitude.  
For the Legendre calculations, the data are decomposed in the vertical so that the vector lengths 
of the inner loops of most calculations are preserved.   Scrambling of data was also 
implemented to alleviate static load imbalances in the radiation and Legendre transformation 
codes.  The radiation imbalances are due to day/night and winter/summer imbalances.  For the 
Legendre transformation code, the imbalances occur because of the way data are stored.  The 
model resolution tested is T120 with 18 levels in the vertical.  The code runs to completion on a 
VPP 300 and produces the correct answer on 1, 2 and 3 processors.  A complete analysis of 
performance on this machine is forthcoming.   
 
A modified version of the code better suited for a cache machine has been developed and tested 
on a 16 processor 195 Mhz Silicon Graphics Origin 2000 (O2K) platform.  In this case, a 
decomposition in the inner-most dimension was used for the Legendre computations so that 
cache utilization improves as the number of processors grows.  It is important to note that it 
took an FSL programmer one week to implement and test a decomposition in the longitudinal 
wave number instead of vertical dimension.  The O2K version of the parallel code was tested 
for 2, 3, 4, 6, and 12 compute processors (plus one I/O processor).  Single processor results 
were measured by compiling the code without translating the PPP directives and then running 
the code serially. 
 
Model performance can be divided into three phases: initialization, forecast and output.  Figure 
15a illustrates the parallel performance of the entire model for a 12 hour run with up to 12 
processors.  These results show that the model scales fairly well.   Model performance improves 
when the effect of initialization, which does not scale, are removed.  The operational simulation 
duration for this model is 4 to 7 days, sufficient to wash out the effects of the start-up serial 
code time.  Thus, the performance of the main time-stepping code (INTGRT) in Figure 15b 
gives a truer measure of the model scalability. A test was conducted in which data scrambling 
was turned off.  The code was found to run approximately 15% slower, indicating the 
importance of addressing static load imbalances. This directive-based version of the code shows 
no loss of efficiency compared to the hand-coded parallel version using only the SMS run-time 
libraries (results omitted for brevity).  These results are preliminary.  Further testing is needed 
on a larger O2K machine as well as other cache-based architectures.   
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Figure 15: Performance of the SMS parallel version of the GFS model on a 16 processor 
Origin 2000. The asterisks are measured speeds.  The dot-dashed line represents perfect 
speed-up.  
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The Quasi-Nonhydrostatic (QNH) model is a high-resolution, grid-based, explicit finite-
difference mesoscale limited-area model designed to run on high-performance parallel 
supercomputers (MacDonald, et al., 1999). The model grid is formulated on the Arakawa C-
grid with a terrain-following coordinate in height.  The finite-difference approximation for 
dynamic variables uses a fourth order scheme in space and the third order Adams-Bashforth 
scheme (Durran, 1991) in time.  For the cloud variables a high-order positive definite finite-
difference scheme is used (Smolarkiewicz, 1982).  The physics packages in QNH includes an 
explicit cloud physics parameterization suitable for NWP (Schultz, 1995), a broad-band 
radiation parameterization for mesoscale models based on Pielke (1984), the Mellor-Yamada 
(1974) turbulent scheme, and a simple vegetation parameterization. 
 
QNH is decomposed in both horizontal dimensions to avoid complex dependencies in the 
vertical.  Except for diagnostic print statements, all horizontal dependencies are adjacent, so 
only EXCHANGE communications are needed.  Redundant computations are implemented to 
reduce the amount of communications required.  The halo thickness is 3. 
 
Figure 16 shows performance on the same Origin 2000 machine described above.  The figure 
shows the model "super-scales", presumably due to the data fitting increasingly well in cache as 
the number of processors increase. The single processor case performs at 67 Mflops.  A 
complete analysis of these results is forthcoming.  The same code has also been run on a set of 
Intel Pentium III processors connected via Myrinet. 
 
 

Figure 16: Performance of an SMS parallel version of QNH on a 195 Mhz Origin 2000 
platform.  Results are for a 42-hour forecast of a 74x74x33, 20 km resolution problem. 

 
Hand-coded SMS versions of finite difference codes such as the Rapid Update Cycle model 
(RUC) scales well to over one hundred processors. Figure 17 shows the parallel performance of 

Processors Time (sec.) Speedup Efficiency

1 45858 1.00 1.00

4 9611 4.77 1.19

9 4229 10.84 1.2

10 3897 11.77 1.18
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a 40 km version of RUC running on the Intel Paragon. This figure is a tabular form of Figure 8 
in Rodriquez, et al. (1996). Since PPP does not add any appreciable overhead to the SMS 
libraries, it is expected scalability of directive-based versions of QNH, RUC and other FDA 
codes will be equally good.  
 
 
 
 
 

Figure 17: Performance of a hand-coded SMS parallel version of RUC on the Intel 
Paragon.  Results are for a 12-hour forecast of  a 40 km resolution problem over the 
continental United States. 

 
6. Conclusions and Future Plans 
 

Processors Time (sec.) Speedup Efficiency

18 7192 1.00 1.00

28 4698 1.53 0.98

39 3479 2.07 0.95

53 2634 2.73 0.93

68 2093 3.44 0.91

86 1772 4.06 0.85

105 1503 4.79 0.82

127 1291 5.57 0.79

154 1168 6.16 0.72



22
 
 

A directive based approach to parallelization (SMS) has been developed that can be used for 
both shared and distributed memory platforms.  The method provides general, high level, 
comment-based directives that allow retention of the serial code nearly intact.  The code is 
portable to a variety of hardware platforms.  Preliminary case studies show this approach can be 
used to develop parallel code on multiple platforms and achieve good performance.  The 
directive-based approach adds little overhead  to parallel versions of the same model hand-
coded with the underlying SMS libraries.  Since these hand-coded versions have been found to 
be performance portable, it is expected the same is true of the directive-based solution.  
However, further testing is needed to verify this. 
 
Several enhancements to SMS are planned. Currently, the directives support positional 
parameter syntax where the order of the directive parameters must be strictly adhered to. One 
improvement is to provide support for named parameters.  Instead of relying on the position 
where a field occurs in the directive, named parameters rely on the keyword name to identify 
the field.  This will improve the overall clarity of the SMS directives and relax current syntax 
restrictions.  Since SMS only supports FORTRAN 77 code, a second future enhancement is to 
support such important FORTRAN 90 features as allocatable arrays, array syntax and modules.  
Third, although a directive-based parallel version of COAMPS has been developed, the nested 
grid feature of the model is not supported.  SMS will be enhanced to include this support. A 
fourth planned upgrade to the tool is to have the PPP translator generate OpenMP code to 
accomplish the parallelization.  Further, some state-the-of-art machines consist of clusters of 
symmetric multiple processors (SMP's). For this architecture, a parallel code that implements 
tasking "within the box" using OpenMP and message passing "between the boxes" using MPI 
may be optimal. The PPP translator could be designed to generate both message passing and 
micro-tasking parallel code. Finally, support for dynamic load balancing will be added. 
 
The SMS approach still requires the modeler to do the dependence analysis by hand. A final 
future enhancement would be to combine it with the semi-automatic dependency analysis and 
code generation capabilities of a tool such as CAPTools.  The idea would be to have the code 
generator produce SMS directives instead of parallel code.  These directives would then be 
translated by SMS.   
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